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(JELCOME TO COMPLEX ANALYSIS!
THIS 1S A BEAUTIFUL SUBJECT WITH APPLICATIONS IN MANY
DIFFERENTAREAS OF PHYSI ¢S AND ENGINEERING INCLUDING

QUANTUM MECHANICS FLUID DINAMICS SIGNAL PROCESSING
(AND CONTROL THEORY, |

(JE WILL BE [0OKING AT UHAT )
DIFFERENTIATION MEANS FOR
COMPLEX FUNCTIONS OF A SINGLE |
COMPLEX VARIABLE

ALTHOVGH SUPERF(CIALLY SIMILAR TO
DIFFERENTIATION IN THE REAL CASE
(FROM WHICH UE GET THE MEAN VALUE

THEOREM AND THE FUNDAMENTAL
THEOREM OF ¢ ALCULUS) THE CONPLEX
(STORY IS MUcH MORE RIGID. y

THE PLAN IS To GIVE ATOUR OF )
THE MAIN IDEAS, TRE PEAK BEING
CAUCHYSs THEOREM THAT GIVES GENERAL
CONDITIONS UNDER UHICH LINE |NTEGRALS
OF DIFFERENTIARLE COMPLEX FUNCTIONS
ARE ZERO. TROM THIS JE VILL QUiCKLY
(DEDUCE SEVERAL AMALING CONSEQUEWCES ]

H1S JILL BE A SWIFT BUT RI60R0VS]
INTRODUCTION, FoR MORE DETAILS
HAVE A Look AT SOME OF OUR
FAVOURITE BOOKS

( AdLFons ( ;
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SUPPOSE Uc 1S A DOMAIN,
1.E. IT ISOPEN AND CONNECTED,
GIVEN £:U->C WE SAY THAT]
£ 15 COMPLEX DIFFERENTIABLE

AT 2o \FTHE LMIT

1y o A1)

EXISTS.

WE. CALL £'(4,) THE
COMPLEX DERIVAT\WE
OF .¥ AT to.

A FUNCTION 1S HOLOMORPH\C
JF 1T 1S COMPLEX
DIFFERENTIABLE AT
EVERY POINT OF ITS
DOMAIN.

HERE ARE TWO EASY EXERCISES.
SHOW THAT {(2)-2
IS NOT COMPLEX

DIFFERENTIABLE AT
ANY POINT.

SHOW THAT #(2)=2-2 15
COMPLER DIFFERENTIABLE
AT THE ORIGIN , BUT
NOWHERE ELSE.

AS IN THE REAL CASE THE
FOLLOWING DI FFERENTIATION
RULES HOLD. LET £AND G
BE DEFINED IN AN OPEN
NEIGHRORHOOD OF 20 AND
LET f BE DEFINED IN A
NEIGHBORKOOD OF 3{(0).

IF § AND ¢ ARE (OMPLEX
DIFFERENTIABL—E AT %o
SO ARE AND %

CPROVIDEong g% ) #0). E)
IF & IS COMPLEX DIFFERENTIARLE

(0) THEN 4o
[ABLE AT 2o,

COMPLEX DIFFEREN

I

R MOREOVER:

G-rﬁ) l(a.c,) =k [{aa)Jrg'( 20)
SENORACHORITD

(20
C.r.) ( o) = (fFC: )Y_

(8°8) a)=4'(§ ) @' (29

ANOTHER EASY
EXERC\SE :

SHoW THAT

(2.“) ;:'- n 9:1-'\

WHERE wnelN.

WE cAN NOW G |[VE OUR
FIRST EXAMPLES,

POLYNOMIAL S AND
RATIONAL FUNCTIONS
ARE HOLOMORPHIC.




HOLOMORPHICITY IS A GOthwH
ON THE REAL PARTIAL DERWATWES
OF THE REAL AND IMAGINARY PARTS
OF A cOMPLE X FUNCT\ON

£: Vel o€ 2=ty uRMivR)
WHERE WE CONSIDER

UR) = Uu(xtiy) = U )

AND SIM(LARLY FOR U,

THEOREM' LET$BE ROLOMORPH\C

N ADOMA'N U . THEN © ANy~
ARE PARTIAL DIFFERENT\ABLE
AND THE CAVCHY -RIEMANN

EQUAT 1Io0NS HOLD.

W 2w
D

U

]

FOR f cR WE HAVE
'ﬁ(%a) am %;io+‘g! £(i.'o]...

BUT ALSD
£'(30) = Gm F3oit) {0 =
o i1fh

®

PROOF: LET 2,V WITH 2o = 2o +LY,
DEFINITION OF COMPLE x DIFFERENTIABILITY AT 20 .

é’.w. U (2th ) +v (eoth Q u(%0/4o) -1V (%)

"'ﬁ‘—( ,‘foJ"’""""‘ (9!0 30)

f’" "‘ﬁ”b,‘dﬁﬁ)-hv (zo ﬂp‘"’fli '"E’:ﬂil "W&a‘i:?
(4

COMPARING RE AL AND |r14c,mmv PARTS WE ET THE RESULT. I

AND CONSIDER THE

L’Cof'ﬂ'o)"}' {"‘v:‘&o)

A CONVERSE 16 GIVEN BY
THE FoLLo WING THEOREM
Who SE PRODT wE OMIT.

\
THE A -RIE MAW EROASONS
THEN £ ISHOLOMORPHAC (™ U,

HERE 1S A FIRST COROLLARY,

LET £:U - C Beg HOLOTORPHIc-

AND REAL VALUED,

THEN £ 1S CoNSTANT.

PROOF: THE CAUCMY-RIEMANN
EQUATIONS GlIve

ou v _ M
29 o hb Ro

AS IN THE REAL CASE WEHAVE :

THEOREM:LET 4'(2)=0 FORALL 2
IN ADOMAIN V.
THEN 4 1S CONSTANT IN V.

PR OOF : FROM THE PROOF OF THE
CAUCHY- RlEMANﬂ EQUATIONS
WE HAVE {'= ._-n.a_ Wepo_u, W

SOTHAT 24 -3 ﬂ-,w?_”o
THUS u AND U'ARE coan?smd-r

A FURTHER CONSERUENCE OF THE
CAVCHY -RIEMANN EQUATIONS 1S
THAT IF £ 1S HOLOMORPHIC AND

TWILE DIFFERENTIABLE ITS REAL

AND IMA&GINARY PARTS ARE
HARMONIC FUNCT\ONS.
FORINSTANC.E

Fu Bu - ‘bu-' ..@..0;_..
o 2y 939" 2ady




ABOUT HOLOMORPHICITY ?

ABSOLUTELY. WE CAN VIEW A
COMPLEX VALUED FUNCTION OF
ONE VARIABLE AS A VECTOR VALVED

FUNCTION OF TWO REAL VARIABLES,
[SA‘I WE WRITE {(2)=ule,yq) +ivix @% ‘
WITH u,o- REAL AND 2=y,
THEN WE CAN CONSIDER

Fi R =R e,y ) = (b y),u(xy))
AND THE DERIVATIVE OF F Is

U 22U
L oe(E ) )

OK | SEE THE TERMS %: 3 5% 25
APPEAR IN DF. BUT HOW DO WE USE THIS
TO SEE IF £ 1S HOLOMORPHIC 7
WELL, WE HAVE IDENTIFIED € WITH R

AND UNDER THIS IDENTIFICATION

A

t( ARE THERE OTHER WAYS TO THINK J

MULTIPLICATION BY ¢ CORRESPONDS TO
CTING WITH THE MATRIX I— ‘

SOTHE LINEAR MAP FROM R* O R” ASSOCIATE
TOA 2x2 REAL MATRIX A 1S COMPLEX

LINEAR IF AND ONLY |IF AT =JA.

v _Mm

WITH A=DF kJECwEFAD'—(:'.?- 33‘:) AND JA

‘ata }:1

SO0 AT=0A IFAND ONLY IF

THE CAUCHY-RIEMARNN EQUATIONS HOLD,
| SEE. THIS MEANS THAT DF DEFINES

q!ln?

dd
?‘

A COMPLEX LINEAR MAP AT A POINT (%y)cR"
\FAND ONLY IF £(3) IS HOLOMORPHIC AT 2=ty




WE NEXT DISCUSS SOME PURELY FORMAL
NOTATION FOR "COMPLEX DERIVATIVES"
THAT (SUSEFUL IN CAPTURING HOLOMORPHICITY
AND THE CAUCHY-RIEMANK EBUATIONS,

LEMMA : LeT
BE £(2)= U(xy)+tu(n,y)
MITH 2= ariy

THen

RO

g:Uu-q@ N

(I i(%+ig)(u+£v)
LR . .
e RS
% i

THE % INTHE DEFINITION
IS A LITTLE WEIRD. LETS
SEE WHY THIS IS NEEDED...

EXAMPLE:

,%; () = 22

PROOF -

CEY g—x"‘;';‘)(m-ig)"
= ."._z[-u 4&!3)-%3_(,‘,-»;,)-&

= L(a.-l-ig)

.
d

=5 (2 -2 ) i (2 +22)

2 :a'aw.

COROLLARY:

IF $c€* THEN

24 - 0¢=>4 1S HOLOMORPHIC
22

PROOF:
4 -y N _ v -0 AND
5’-{4 D =
9!-4-@!:=<9
Y r
AND THESE ARE THE
CAUCHY - RIEMANN

EQUATIONS FOREZ 0O

{
I

FACTS: IF $.9 e
%(:{L’-\-g) =%‘% + %—?

2fe)=2%9+122

EXERCISE:

USE WHAT 1S ON THIS PAGE
TO SHOUTHAT IF {AnD g
ARE HOLOMORPHIC

S0 ARE §+g AND §-g




HOW CAN WE INTEGRATE
A COMPLEX -VALUED
FUNCTION ALONG
APATH ¥ IN THE

(OMPLE X PLANE ?

DEFINITION: A PATH IN C ISASMOOTH ¥:[a.b]—C .

APATH  Y:[o.b] »C
ISCLOSED IF ¥(a) = ¥(Y)

A PATH  ¥:[a ) = C
IS SIMPLE IF Y()#Y(v)FOR 24w

DEFINITION: ASSUME F:Uf = € 15 CONTINUOUS AND U Is AN
OPEN NE\(;HBORHOODB OF Im(¥). THE LINE INTEGRAL OF F OVER ¥ |5

dea ::fF(b‘({-.)) Y '(+)dt
X a

WHERE ¥:(ab]~C.
EXERCISE
LET ¥:(o2r]) » C BE

¥(E) = e THEN
// \x\ f}:‘ 1M :K;_Tri. IF n=-1

IF n
'S

THI(S
EXERCISE
I S IMPORTANT:




~REVERSING

T£T ¥ BE APATHAND
pENOTE B -¥' THE SAM g
ppTH IN THE OPPOSITE
DIRECTION, SO -¥(t)- e
THEN ..r'gd‘ = - _r.fd.%

~PIECEL!

WE SAY Y:[a.b]—= @ s
PIECEUISE SHOOTH IF THERE
s A PARTITION @=0oca. cq
SUCH THAT Blea, a9 154
A SHOOTH PATH FOR(:0,. .,
(JE THEN SET ftalda=l [ A3y,

¥

SAY M,XL ARE P'ECEUISE
SMOO0TH PATHS AnD Y,
STARTS HHERE ¥, Enp
LeT Y., ¥ BETHE PATy
WHICH FIRST AGREES iy
§, THEN AGREES w/Ty X,

—

M THF

“’ntﬂ;.qug
N \
" CONCATE TN Tred Kb 1S A Precgy

PROOK eT7s SKIM\
A 8 e

[ f()d2= J;b{( Y&y

g r y

Now (-¥)

EXERCISE: Iramsm

SMOOTH THEN f fdais
1 JDEPE NOENT OF °

THE CHO[CE OF Qg’..., Q’N

rade/ae

f—f&:lfdh {4,

‘t“' x?

%—M

=



fg\MlTlVES

SUPPO SE £ 1S CONTINUOYS On
AN OPEN SET U Anp T”ERE
(s A SH00TH FU'\JCTION

SUCH THAT g’ — ?

A PATH ¥ IS DEFINED 7
BE A MAP ¥:I—C ANp

NOT JUST A SUBSET OF ¢t
(F o: 7 L 154 '
pIFFEOMORPHIST WE (1 |

e ITEGRALS Thoygy

% M— —
_— \ y \
R E PARAMETRIZAT O /X—: Yoo - T -

—
M

JE HAVE
l “(*)h\éﬁfh}l Hll
¥ ¥

JHERE 1T ¥:Log

=T

=

M—

mlz ANY plecm

gMOpTH PATH [o,b] -

[ FeaM>=9(§(b))-a( o)

A REPA RAMETRI2ATION
OF ¥ AND IN THIS cAsg

[*(&)Az =j,f(%)cli
¥

¥

%\\\

—
THE RIGHT-HAND Sipe
ME ANS

J\ {)| Hel= j 14 w‘vlh"(*)l}ﬁ
L
¥

\




\imuwv's THEOREM]

THE IDEA OF THE PROOF 15T0
COMBINE GREEN 'S THEOREM
AND THE CAVCHY RIEM ANN

EQUATIONS

TG
UUU J

Yoo Sosed.
"cow‘gjuﬁm%»w B R? wilh
inlonior D and P@Be,
MWO’WDW

| fpd.x_»rQéé j] %’g)JMIH




PROOF OF CAUCHY'S THEOREM

WRITE
£6) :u(n,j)-i-f.'tfé‘;j) WHERE = =7tiy

THEN ji(’c‘“ J‘(u+tUXJ,n+ dy)
—-j@cl-n_ u-alj)-ktf@-dchla)

NOW APPLY GREEN S
THEOREM . TWICE.

f@cl*- -vdy)
ﬂ'_?_w_)a ad
x .j

j(v&x+udj)

ff -'"*—)J“"z

{15 ROLOMORPHIC, .

=L So THE cAUCHT- RIE hadN RecALL:
QW__ 9 £QUATIONS HoLD u e
'ag 2% L 2% 9Y

So
J(ul'u. = U'J‘v-) pelf >

¥

So
j(ud.j*tf"clj): o
3

WHICH TOoGeTHER [mPLY

li—&)él e



WHEN WE DEFINED LINE INTEGRALS
WE SAW THAT IF @ IS THE CENTER
OF A CIRCLE 3 OF RADIVUS p THEN

%
—iL— = 2w ‘l!l"
2-a

%

WE NEXT SHOW THIS HOLDS FoR
ANY POINT 2, [NSIDE THE CJRcLE.

LEMMA:IF Yy -a,-rfe

te Lo,2r] UND I!. alt?

THEN Y,
-—-‘-‘-L = 2w
-1,
%

PROOF: IT |S ENOUGH TO SHow
—  THAT FoR r<pP-lzo-2|

Jch_ _[dx
-3, Ji-2,
L. *

INTRODUCE PATHS o<, AND o,
CONNECTING THE Tuo c.mc.u-:s

TO GET
aen N
SPLITS

W AN,

NOTE f,,[5 BOUND REGIoNS ON
WHICH 251 1S HOLOMORPHIC.

S0 BY CAUCHY'S THEOREM

OBSERVE THAT x, \S A PART oF
BOTH B, AND B, , BUT TAKEN N
OPPOSI\TE DIRE(.TION,S (AND
SIMILARLY FOR « LO'JSOTHE
CONTRIBUTIONS A o IN THE
SUM OF THE INTEGRALS ALONG

B, AND p, CANCEL:

I da [ dr
“. &-10 t- D
Ye




| —

| wAUCHYS lNT&GRALFORHUL;J Va2 A

LET £:Uu—»C BE HOLOMORPHIC AND a €U BE
INSIDE A CIRCLE ¥ CONTAINED N U.THEN

f(a): = [2@)d;

29
PROOF ’
WE HAVE DEFINE APPLY
4(2)-1(a) CAUCHY 'S
3(%){ e *'*Q THEOREM
$(o) 2= TO g ALONG ¥
| T0 GeT
= dx = A%
0: [ qa)d - Ja £ 2 = fel gr 42
:_‘[%d% —!é%d-?_ :zw;_g@,) 0

CAN Y0U USE THIS TO)[EASILY 45 46)- e®
COMPUTE Tz [ &4 (| Is HOLOMORPHIC ONE.

@ | rere 5115@7‘ ? AND =3 LIES INSIDE X
' SO CAUCHY'S NTEGR{!L

LAl
\FORMULA GIVEs T:-awie

OK . CAN YOU cOMPUTE

R (VES, THAT 1S EASY AS
N Ry a:3 LIES OUTSIDE OF ¥,
3 | SO CAUCHY'S THEOREM

WHERE Y, IS
GIVES I,=0.
WHAT ABOUT I,- | £ 4
a3 SPLITTING ¥ INTO §.+Y,
WHERE LE 1S 2 &ET I3= II+I3_= 1,_ﬂ.'-ell.‘
3




LET £:U—C BE HOLOMORPHIC . THEN { IS
ANALYTIC ON U, THAT Is, IF aelk THERE IS
A DISC D CENTRED AT a SUCH THAT

1(2) = f.'c..@-&)"‘ FOR SOME c.eC.
PROOF:

LET D BE A AND LET ¥ BETHE
DISC CENTRED CIRCULAR CONTOUR
AT 0. AND ' AROUND D.

CONTAINED [N u.

CAVCHY'S INTEGRAL AND USING THE GEOMETRIC
FORMULA SAYS SERIES WE GET

(ul L
4(-%) IﬂJ S Ww-2  PW-a-(2-o)

| ! .
W-a |- E.:.ﬂ_-..)
u—
(=)
- R
_qnma w-o

PUTTING THESE TOGETHER GIVES

L (20647 (22 HARE. %
‘f(%) Z.'H"LJ J‘J l-' a -golfar(w_-%x%:‘ﬁéd(% CL)

SO UE SET
S, B = JiLUL
21r( x(_,_a)wl-i

AND JE ARE DOWE.



D_HE IDENTITY G—HE OREM
L‘_ ’

LET {:u—~C BE HOLOMORPH| ¢
WHERE U e € IS OPEN ANp CONNECTED
SUPPOSE (<), . <G 1S A
SEQUENCE WITH {(c.) =0 FOR ALLw.
IF(€.)uen HAS AN ACCUMULATION
POINT INU THEN 4zo ON U.

D 4

LET ¢:U—@ AND 4:u—»clBe
HOLOMORPH\C. WHERE Uck
|s$ OPEN AND CONNECTED,

| F %:% ON SomE OPEN Ve
THEN %EA.

I
-

LEMMA:LET {:U—~C BE HOLOMORPHIC
SUPPOSE () pem <€ HAS AN ACCUMULATION
POINT ¥eU AND {(Y.)=0 For ALL n .

THEN THERE IS AN OPEN DISC D CENTERED

AT ¥ SUCH THAT {20 OND.

PROOF : WITHOUT LoSs oF GENERALITY
WE MAY TAKE Y=o, AS OcU AND U IS
OPEN THERE IS AN OPEN DISC DcU
CENTERED AT O.

&y

HoLOMORPHIc FUNCTIONS ARE ANALYTIC
SO UE CAN WRITE

)= L o..2™ oND FoR SOME Ou. € &
[F{1s K6T IDENTICALLY 2ERO ON D THEH
THERE IS A SMALLEST reN SUCHTHAT @,¢0,50
{x)-L oawmi™ oND

n.w»

= 2" A+ 0O, T+
As Ox,.#o HE TERM ay+Q,, 1+.) 1S
NOWw +ERO FOR 12| SUFFICIENTLY SHALL .
S0 {(2)#0 FoR NONERO 2 WITH [2( SMALL.

WHICH CONTRAD(CTS ¥=0 BEING AN

PROOF OF [DENTITY THEOREM
LET G: (celt :{ 20 ONSoMEDISC CENTERED Are)

|T I1SCLEAR THAT G IS OPEN.APPLY ING
THE LEMMA GIVES ceG 50 G IS

NOTENPTY, FINALLY IF ceG THE
€ 1S THE LIMIT OF SOME SEQuedce
OF 2EROS OF $, S0 THE LEMMA IMPLIES

ceG. SINCE U S CONNELTED G=U,
I.E. .fzo OoN U,

FORTHE. OTHER STATEMENTS APPLY
THIS To 4= - £ AND USE THAT™
V coNTAINS 4 LimiT OF POINTS

@h)sv_

AccUMULATION PoiNT OF LEROS OF 4. [

IN OTHER WORDS

IF | KWoW A
HoLonoAPUIC
FUNCT(ON Here

| Know IT
EVERYWHERE




N
Liouy, LLE'W

LET £:€—¢€ BE HOLOMORPH [~
AND BOUNDED . THEN IT 1S CONSTANT.

WHY 1S THIS
INTERESTING

?

o

LIKE THE IDENTITY
THEOREM T sHowS

HOW RESTRICTIVE IT
IS To BE HOLOMORPHIC

CASE.

LJH&T
SIN2? j ‘I

THINK ABOUT HOW
DIFFERENT THIS S
FROM THE SHOOTH

qE it

e

e

J L

R S

HAVE YOU EVER
STUDIED HARMONIC
FUNC,TIONS ?

I_L-ll—l-—l-

—

[ — B
WELL THERE 1S A
SIMILAR RESULT
THAT SAYS THAT A
HARMONIC FUNCTION
ON IR" 1S CONSTANT.

T

—{r

«

\S\THARD T PRVE

LIOUVILLE 'S THEOREM 7
NO, IT FOLLOWS EASILY
FROM CAUCHY 'S

INTEGRAL THEOREM,

1L

PROOF:

SAY |4@)|&C FORALL2. FIX aeC AND

APPLY THE CAUcHY INTEGRAL FORMULA TWwICE TO THE

CIRCLE Jr

fo) - 409 =, j

SO | 4£@)- ‘F(P)‘ < CIQ\W(KJ
LETTING R+ oo IMPLIES £(a) =£(0).

OF RADIUS R>Ia)
9 4z - (10 s = O [36) d2

TO

G\VE

z-r» 3 -a)

2T R (R-1al)

— c_|a|

R-toa

AS @ WAS

ARBITRARY WE CONCLUDE £ 1S cONSTANT.



ﬂz REACHED THE END OF DUR
BRIEF INTRODUCTION. UE HOPE

WE MANAGED TO CONVEY A TASTE
OF THE THEORY AND SOME OF THE
STARK DIFFERENCES BETWEEN
QOLOMOEPH'IC AND SMOOTH FUNCTIONS,

ﬂr—‘ YOU ARE CURIOUS ABOUT WHAT 1'oj
LEARN NEXT TYPICAL THEMES INCLUDE
COMPUTATIONS OF COMPLEX INTEGRALS
OF USE IN APPL|CATIONS. IT TURNS ouT
THAT THERE ARE SOME POWERFUL
TECHNIQUES FOR COMPUTIN & INTEGRALS
IN THE COMPLEX PLANE, MAKING IT OFTEN
EASIER THAN IN THE REAL CASE (AND
IN FACT YoV CAN USE THIS TO PERFOR™M
SOME SPECTACULAR COMPUTATIONS OF
REAL INTEGRALS AND EFFORTLESSLY
SUM OTHERWISE INFEASIBLE INFINITE

\series) /

AHLFoRS
FREITAG - BUS AT

GUNNIN G - ROSSI

(T_HEN THERE 1S THE WHOLE SUBJECT OF RIEMANN SURFACES qucnﬁ
EXTENDS COMPLEX ANALYSIS FROM THE COMPLEX PLANE To SPACES

WITH NONTRIVIAL GLOBAL ToPoLOGY. ALSO, JUST AS IN THE SMOOTH CASE
THERE IS THE ENTIRE SToRY OF HOLOMORPHIC FUNCTIONS OF SEVERAL
COMPLEX VARABLES WHICH HAS ITS TWISTS AND TURNS, AND REQUIRES A LoOT
| OF MATHEMATICAL TECHNOLOGY, BUV ITS BEAUTY REJARDS THE HARD LJORKJ}




COMICS ARE A LANGUAGE THAT IS STILL LARGELY UNEXPLORED
AS AMEANS OF SCHOLARLY WRITING IN THE SCIENCES.

THIS SHORT BOOKLET PROPOSES AN ATTEMPT AT USING
THIS LANGUAGE TO COMMUNICATE RIGOROUS MATHEMATICS
EXPLANING A CLASS\CAL SUBJECT IN PURE MATHEMATICS.
COMPLEX ANALYSIS. THE EXPOS\TION HASTHE STANDARD
LEVEL OF RIGOUR EXPECTED FoR UPPER UNDERGRADVATE
MATHE MATICS STUDENTS, AND EXPLORES WAYYS IN WHicH
USING (OMIcS DIFFERS FRoM STANDARD TEXT.

JULWS ROSS IS A PROFESSOR OF MATHEMATIcS AT THE
UNIVERSITY OF ILL\WOIS AT CHICAGO . HE HAS NEVER
PLAYED THE SHAKUHA<H\ . HE |5 FOND Of FIREFLIES
AND B(sScoTTES.

ANDREA TOMATIS IS A LECTURER N MATHEMATICS
AT THE HOCHSCHULE FUR WIRTSCHAFT unD TECHNIK
IN BERLIN . HEHA S NEVER SEEN A SHAKUHACH) .
HE (s Fodd OF SALAMANDERS AND THE MuUSIc of
(HET BAKER.

THe Worw UAs PARTIALLY SUPPORTED BY T™E
NAT\ONAL SAEN<E FoudoaTioN AWARD DBMS 1349443,



